
A-AIII 605 ROCHESTER WIV NY GRADUATE SCHOOL OF MANAGEMENT F/6 12/1
ROC N E MARKO" CHAINS STRUCTURE AND ALGORITHS.(U)

MAR a1 J KEILSON, U SUNITA, N ZACHMANN F19628-80-C-0003
UNCLASSIFIED AFBL-TR-1-0183

,~'IEEEIIEEEEII2EIIEIIEEIIEEI
Illluluululul



fill-illl11111 .1 ~ * 111~2.2

IIIIIN III ilIIIl 8
11111.25 RfL 1.4 T .A

MICROCOPY RSOUINTTCHR



AFGL -TR-81-0183

RqW -CONTINUOUS FINITE MARKOV CHAINS, 3
ST1RUCTURE AND ALGORITHMS

J. Keilson
U. Sumita
M. Zachmann

University of Rochester
Graduate School of Management
Rochester, New York 14627

Scientific Report No. 3

March 1981

Approved for public release; distribution unlimited

DTIC

AIR FORCE GEOPHYSICS LABORATORY DEETC
AIR FORCE SYSTEMS COMMAND 9
UNITED STATES AIR FORCE
H*ANSCOM AFB, MASSACHUSETTS 01731

00 ft ADQBI



Unclassified _

SECURITY CLASSIFICATION OF THiS PAGE (hen Doe Entered)__

REPORT DOCUMENTATION PAGE BEORA COSTCTIONSFORM
. RErPORT NUMBER2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

AFGL -TR-81-01831Z

4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

ROW-CONTINUOUS FINITE MARKOV CHAINS,
STRUCTURE AND ALGORITHMS Scientific Report No. 3

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(@) 6. CONTRACT OR GRANT NUMBER(S)

J. Keilson
U. Sumita F19628-80-C-0003
M. Zachmann

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AR EA & WORK UNIT NUMBERS

University of Rochester
Graduate School of Management 62101F

Rochester, New York 14627 667009AG
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Geophysics Laboratory March 1981
Hanscom AFB, Massachusetts 01731 13. NUMBER OF PAGES

Monitor/LYD/Irving, I. Gringorten 44
14. MONITORING AGENCY NAME I ADDRESS(1I dlllernt from Controllifn Office) IS. SECURITY CLASS. (of this report)

Unclassified
IS.. DECL ASSI FIC ATION/DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Repor)

IS. SUPPLEMENTARY NOTESResearch was conducted at the M. I. T. Laboratory for Infor-

mation and Decision Systems with partial support provided by the U. S. A. F.
OSR Grant Number AFOSR-79-0043, U.S.Air Force Geophysics Laboratory
Grant Number F19628-80-C-0003, and the National Science Foundation
Grant Number NSF/ECS 79-19880-

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

finite Markov chainscontinuous time processes

bivariate distributions
ergodic distributions

20. ABSTRACT (Continue on reverse side if neceesa'v end identify by block number)

For any finite bivariate Markov chain [J(t), N(t)] on state space
{(j,n)10 !5 j 5 J, 0 < n 5 N} for which row-continuity is present, i.e., N(t)
changes by at most one at transitions, the ergodic distribution and mean pass-
age times may be found by a simple algorithm. Related structure will be des-
cribed. The procedure is based on probabilistic insights associated with
semi-Markov processes and birth-death processes. The resulting algorithms
enable efficient treatment of chains with as many as 5000 = 50 x 100 states

DD I 14,7 Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (W"en Date ntered)



* Unclassified
SECURITY CLASSIFICATION OF THIS PAOE(Whan Date 9010"0)

20.

or more. Such bivariate chains are of importance to countless applied models
in congestion theory, inventory theory, computer design, etc. The algorithm
developed is to be used as a basis for calculating the distribution of the
maximum of certain stationary meteorological processes over a specified
interval.

Io For

1 ty Codos

,lid/or
* 1 3nit al

Unclassified
sgeiCVAniY CLASSIPICAI@4 OF ?NIS PAGStWhan DO atw



-3-

§D. Introduction and Summary

A variety of Markov chains in continuous time modeling stochastic

systems of applied interest have for their state space a rectangular lat-

tice of states 8 = {(j,n) : 0 -c j J, 0 < n < N}. When the number of

states (J I)(N+l) is large, say a 100, evaluation numerically of the

ergodic distribution, and moments of exit times and entrance times to sub-

-sets of interest is costly and simulation is often resorted to.

For many such chains, changes in column index j or row index n at

transition epochs have values 0, + 1. The chains may then be described

as column-continuous and row-continuous respectively.

When such row-continuity is present, for example,

systematic treatment of the row subsets of states as probabilistic entities

provides a theoretical basis for the discussion of the chain, and algo-

rithms for the description of the chain involving matrices of order J+l

rather than (J+l)(N+l), better suited to the capacity constraints of com-

puters. The procedure may therefore be described as rank reducing.

Algorithms based on such treatments of rows as entities have been

developed by M. Neuts [10,11],when N is infinite, for the study of queues

with service times or interarrival times describable in terms of "phases".

His algorithms deal with state spaces for which N-- and the transition

rates for the chain are independent of row index n, except near the boundary

n-O. His methods are oriented largely toward the ergodic behavior of such

chains.

The present treatment is primarily directed towards finite markov

chains with transition rates dependent on both j and n. Entrance and

exit time moments are obtained, along with the ergodic distributions.
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Entry and exit time distributions, obtained via the Laguerre transform

[8], will be discussed elsewhere.

It should be emphasized that the row or column orientation, natural

for some systems, may be an effective tool for chain description even

when no natural row or column meaning is present.

In the first section, the basic bivariate process is described and

notation is developed. Several motivating examples are given. Subsequent

sections develop the methodology, and algorithmic procedures, and discuss

computer efficiency. In a concluding section a tandem queue with Poisson

.1 arrivals, exponential service of different rates, multiple servers, and

finite waiting rooms is presented.
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§I. The Bivariate Markov Process B(t) * [J(t),N(t)]

Consider a bivariate Markov process B(t) - [J(t),N(t)] on B A JxN

where 7 - {j: 0 < j <J), M - {n: 0 <n < N}. In a typical context, the

process J(t) is a finite Markov chain in continuous time (independent of

N(t)), but N(t) is not Markov and depends on J(t). The formalism we

develop is more general, however, and does not require that J(t) be Markov.

Suppose that B(t) is governed by the set of hazard rates

{V~,,n), (kin) j,kc J; n,mcN. Of interest in this paper are irreducible

finite Markov chains B(t) for which N(t) is skip-free in both directions

so that

V(j,mS,(kn) - 0 if In-mi > 1. (1.1)

It will be convenient to work with the set of states {(j,n)) with

common row index n as an entity, and to introduce the corresponding

nottio 0notation , v° n to designate the transition rate matrices of order

J~l by

(a) • [v (j,n),(k,n)] (1.2)

(b) n [V (j,n),k,n~l)]

(C) V - [V ,
n (jn),(k,n-l)

We will also work with the matrix

v d a 0 

(1.3)

and the diagonal matrix
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YDn = diag [ I V(jn),(k,m)] "  (1.4)

In the same spirit we will employ the transition probability matrices
of order J l

2Mot) = [P(j,m)(k,n)(t)] ; P(j,m),(k,n)(t) a P[B(t) = (k,n)IB(O) = (j,.m)]
(1.5)

and state probability row vectors

"(t) = [p nt)] ; P n(t) a P[B(t) a (j,n)]. (1.6)
Ent P(j,n)() P(j,n)(t

The ergodic row vectors will be designated by

e a [e(jn)] (1.7)

where e (j,n) lim P(j,n) (t). Laplace transforms will .often be used, with

the notation typical of subsequent usage,

.rTCs) - L[ P(t)] - f p(t)eSt dt. (1.8)0

We will also employ the notion of a matrix p.d.f. [S].

Def. 1.9 A matrix function L(T) a [f (T)] is a matrix p.d.f. iff

a) fnCx) > 0 Vm,n,x

b) I fc fjkCX)dx a 1 0<j < J.

Such matrices play an important role in processes defined on a Markov

chain [7] and in Markov renewal processes. In our setting fm,(x) - 0 for

x < 0.
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Examples

To motivate the analysis that follows and indicate the prevalence of

such row-continuous processes some examples are appropriate.

A. Contiguous Processes

Any chain B(t) - [J(t),N(t)J on B - {(j n) 0 0 < j < J, 0 < n < N)

for which (jn),(kin) • 0 if li-ki > 1 or Im-ni > 1 will be called con-

tiguous. The row-continuous chains are more general in that the marginal

row process need not be skip-free.

For all such contiguous processes the transition rate matrices (1.2)

are tri-diagonal (cf Fig. l.A). All such processes that are irreducible are

amenable to the methods we describe.

B. Contiguous Horizontal-Vertical Processes

A subset of the contiguous processes are those for which either J(t)

or N(t) can change, but not both simultaneously. If, for example, J(t)

and N(t) were independent truncated birth-death processes, B(t) would be

horizontal-vertical, since the probability of simultaneous change would

be zero.

Another set of processes B(t) a [J(t),N(t)] has J(t) an independent

truncated birth-death process and N(t) a dependent birth-death-like process

for which the upward and downward transition rates change when J(t) changes.

One example of this type is a communications link carrying both voice and

data [1]. We note that for such processes v and v are diagonal. See
-n -21n*Fig. l.B.

C. Tandem Queues with Blocking

A contiguous process of interest is the tandem two station series

queue where each station has finite waiting room, arrivals are poisson with



-8-

rate Aand service times are exponential with service rates n,, T12 ' For

this process V+ is diagonal, v is upper diagonal, and v 0is lower-n -n -n

diagonal. (A matrix a = [a..] is upper diagonal if a. 0 implies

j=i+l.) See Fig. 1.C.

The methodology treated here allows each station to consist of a

finite number of servers. Various types of blocking and feedback could

as easily be analyzed, although the example of §7 has blocking defined by,

the first queue stops serving while the second waiting room is full.

Extensive numerical analysis and further discussion of this tandem

queue model can be found in V7.

D. Assembly Line

One interesting non-contiguous process is an assembly line with two

machines in sequence and finite buffer storage between. The marginal

process J(t) describes fluctuating working and non-working states of the

two machines, M1and M2which are governed by failure rates ui1 , 112 and

repair rates A, XA respectively. The two machines process work at the

same rate of speed, i.e. have a common hazard rate p for completing their

operation. When the second machine is down, items accumulate in the buffer.

When the first machine is down, the flow of incoming items is cut off and

the second machine goes idle after the buffer is emptied. The first machine

stops when the buffer is full. N(t) is the number of half-finished items

in the buffer.

For this model, both v and v- are diagonal with two non-zero-n W.n

elements. The transition rate matrix v 0has a zero diagonal, and (V o)T
-n -n

has a zero diagonal. See Fig..l.D.



(A) Contiguous process (B) Contiguous horizontal-vertica

*t f

(C) Tandem queue (D) Assembly line N on-contiguous

(full row shown)

Fig. 1.1 Possible transitioni £rom an interior-point
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MAA

Pog, )e T

~Fig, 1.1.(;,) .(expanded) Tandem queue
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§2. Passage Time Densities

The description of the ergodic and dynamical behavior we will develop

is based upon the passage time densities for the bivariate process. To

exploit the skip-free feature of row-continuous processes, the passage

times between states of adjacent rows are treated as building blocks. The

focus on a row of states as an entity then gives rise to a matrix probability

density function describing the joint distribution between the time of

arrival at the adjacent row and the state reached, as a function of state

of origin. From the passage time p.d.f.'s for adjacent rows one can then

describe the regeneration times for the states of a row and hence the

ergodic probabilities. This will be clearer from the details of the

development.

To discuss the passage time densities it will be useful to work with

the lossy process J*(t) for row n on the set {(j,n)} for which other statesn

of B (i.e., other rows) are absorbing. Let

* p(j,n),(k,n) (t) = P[J(t) k, N(t') a n, 0 < t' < t I J(O) = j, N(O)= n]

and as for (1.5) let n(t) - [pj,n),(k,n) (t)]. Then since

d Pn(t) -" t 0 we may rewrite pn(t) in the form
(tAn~t MV *tvp t)i h r

p* (t) * exp{Q.t} (2.1)

where is the R matrix for the lossy process, i.e.,

= + n v° (2.2)

Note that n(t) is strictly substochastic. From (2.1) one then has for

ff* (s) - L p* (t)]
'nn
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St

T*(s) f stp* (t)dt [s I q] s > 0. C2.3)-nn 0 -,nn =

The chain B(t) is uniformizable [6 ] in the sense that there exists

a v such that c > v > max V V(jm)(kn) when J and K are finite,
(j ,m) (k,n)

that is 8 is finite. If we let

* 1 + - 1 I I

- n -- ; a! 4n [ ] (2.3a)

we have from (2.3)

Va]* (s) = (s+V)I- VO (2.4)
nfnn

To proceed further, we require the passage time densities and some

associated notation. Let sn;jk(t) be the joint probability density that

the set {(j,n+l) : jJ} is visited for the first time at (k,n+l) and that

the time of visit is T, so that S f Sn .k(t)dT = 1. Similarly, let s ;k(T)
kO n

be defined with respect to visiting the set {(j,n-1) : jeJ} for n > 1. The

irreducibility of B(t) implies that (cf def. 1.9) s(t) = [s ;jk(t)] and
-n n~j

4(t) = [s;jk(t)] are matrix p.d.f.'s. Correspondingly,

= f 1(t)dt and 4 s(t)dt are stochastic matrices. In terms of
- 0 0

the Laplace transforms, On(s) L [(t)] and c-n'(s) = L (t)], and moment

mazrices P + f t s (t)dt, U" * t s (t)dt one has-n 0 -n -n 0 --n

+ + d +s a a( ) P - a (s) (2.Sa)

s 0-(O) - ( (s)I (2.Sb)
-nMnw ds -mi

saO
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The skip-free feature of the row-continuous processes provides a

recursion between the upward passage time p.d.f.'s s, and between the

downward passage time p.d.f.'s s, that is a direct matrix counterpart to

that present for birth-death processes where J = (0). The recursion is

based on an argument similar to that employed there [6,4]. For N(t) to go

from n to n~l, it must either do so directly after motion on row n, or

there must be a first downward transition to row n-i, a first subsequent

return to row n, and then a first subsequent arrival at row n~l. A

probabilistic argument based on this then gives our basic recursive equation

An -t p* (t _ns1 t) Ct) , n > 1 (2.6)
-n.n t-n +..nn t-nn -l )=S

where the asterisk denotes convolution in time. That is, £(t)*k(t) =

ft a(t-T)(T)d-. Consequently, from (2.6) and (2.3a),

n

(s) a f* (s)a + vn (s)ao (s)o( s), n > I (2.7)
-n qn -n -%n -n-qn- -n

If we solve (2.7) for o,(s) and use (2.4) we obtain

i - C-;-) { + a- + Cs)) ] o Cs) -C() a + (2.8)

In place of (2.8) one has for n-0, from s.(t) " Pjo0 t)v and (2.4)

V 0 + +

[ #- -)a]a (s) c(-')a (2.9)
*V .0 . S+V MO

Equations (2.8) and (2.9) can be used to generate o(s) recursively. Similar

equations generate q (s) recursively from o(s) (cf 4.2). By letting s=O

we get:

.
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I- {a a s+- ) ]s+ .a n > 0 (2.10)

and

[I- "]s a (2.11)
0 00 -0

two recursion relations for calculating s .  The equivalent relations for

s appear in (4.4).
--n

Differentiation of (2.8) and (2.9) with respect to s at s-0 leads to

the following relations for the mean first passage times:

aI-a - S*_4. = 1 [14~ + a j+, (2.12)
- - n -n I

and

a ] - s. (2.13)

+ .0 - 4.

We note that s is stochastic and a 0 a + a is stochastic. Hence, if-n -n -in -in
a is not zero (guaranteed by irreducibility) a + a +- is strictly

substochastic, its spectral radius is less than one, and [I - a - +

is invertible. One may therefore obtain n from (2.10) and + from (2.23).

We also have that 0 < o(s) < En for s>0 real, hence (with v/s+v < 1) we

find that [I- ( {aO + a n O _l(S)}] is invertible for s > 0 real.

Therefore (2.8) may be used to obtain 0+(s).-n

Of frequent interest in applications is the matrix passage time p.d.f.

Lon(T) describing the joint distribution of the time at which row n is

first reached and the state reached given a start at row 0. Specifically

Son(T) - [son;ij(T)] where s on;ij(T) = the joint probability density that

the set {(j,n):jeJ} is visited for the first time at (j,n) and the time

of first arrival is T, given start at (0,i). A simple probabilistic

argument shows that +n(t) + +C )* )..) oe n g16on(T) -" "0T * l T *. -1 l(T). Correspondingly,

a (s) + 0CS)o (s).. +

-on 20 !1 c-1)
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3. Ergodic Probabilities

We can now use the passage time densities of Section 2 to find the

ergodic probabilities, as outlined in the introduction to that section.

The basic probabilistic argument for finding the transition probabilities

from the passage times goes as follows. If one is in row n at time 0,

to be in row n at time t, either

a) one never left row n

b) one went to row n+l at some first time, returned to row n for

the first time subsequently, and was in row n at time t, possibly after

further wanderings,

c) one went to row n-l at some first time, etc. as in b).

Consequently, one has, for the cases 0 < n < N, n-0, and n-N respectively,

Zmn (t) 2 N nn (t)a ns ( t)*mp n(t)

Fro (3.1)1

C)n (s) (s)a -s (t) ,P-nn (t) (3.2)

P0 M MoC + VP4 (tgoC *-(*n. M3.n1a)

soo that61

(t* .(t) t) + (t) (3.1lb)

(t) - Ct3 * " 4

From (3.1)

S
(s)  v-* (s) + Cs) s) (s) its(s) (3.2)

".\nn ~~ - 1C s) 1 nn+1 nn~ n -nn

+ W (s) a" a-(s) itn(s) 0 < n < N
wnn -n nl m

so that

-=- n )a+ a-.(s) -%M*n(s)a -l(> ns 0+n ( "s) . (
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One then finds, from (2.4), that
1 O + - -. .-

S(S) {-) a + a a- (S) + a- CF- (S) (3.4)
'nn (7v- +V) wn n +l ii h-l()

To show that the matrix expressed within brackets is in fact invertible

we let

%4.

(S)= {ao + a +"(s) + a (- (s)) n = 1,...,N-1. (3.5)
(i+)- -n "h+1 -h 

m"h-1

0 +.
Note that a M n + is stochastic, and further

-

n 

-

L-l[8 (s)] - (ve'ItI)*(a° 6(t) + a+ S (t) + a s n'. (t)), (3.6)
- -n -ni -n~l -ii -n-i

therefore each row of 0 (s) is a convex combination of rows of matrix

p.d.f.'s. Hence, Cs) is itself the Laplace transform of some matrix

p.d.f., say b (t). Hence [I-a (s)] isinvertible for s>O, real. With this

identification, (3.4) becomes

1 -

7 n (S ) -) [I-$ (s)] n(l,...,N-1. (3.7)
-nnl 5V -n~

In fact, with the definition

V(s) 0 C- { + .+ S) (3.8a)-=o0

and

() 23.b)

we immediately get (3.7) for all ncN.

To find eT we must evaluate lim s w (s) I e . In (S] it is shown that
n s.O -nn --
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TT

lim 7(0 ) (3.10)
where Tb i the stationary left eigenvector for n()and b sthe mean

--- of h (t), that is

and

4n f t bcnt)dt. (3.11)

0

We can easily find JnC0) by setting szO in (3.5),(3.Sa) and (3.8b), while

is accessible by differentiation via

n ='m- (O) a .CO) + art l ,n-1 n-l,...,N-1 (3.12)

and
_]. 1 +0)

B 0)0 -(0) (3.13)

As we will see in Section 5, row balance

T+ .- T + n - (3.14)

n+l . 0 < n < N-1

is always present. This enables one to evaluate

mbn - (3.15)

recursively without computing bn' and thus + andi , in the following

T 
1 T

manner. From (3.9) one has !n e bn so that

eT - 1 eT - T 1T.
e~ aV~ 1.l 2. 1 a. M-e! a,

-n~ 'iro- b,n,1 -b,n.l a~ - aIi 1 - m -bn a"-t1 1n~ ,.b~l1

(3.16)
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Hence, from (3.15) one sees that

T

!b n~l £.l 1
n %,n eT  + 0 < n (3.17)

!bn !h - -

One may start with an arbitrary positive Mbo and then normalize at the

end. More specifically,

T K T
e = 1  -bn IQ > 0, arbitrary-n mbn

and

K T -"  . (3.19)
nCN



4. Summary of Computation Procedure

A tabulation of the key results obtained above is given to provide

an overview of the formalism, and ease of access to the formulae needed

for implementation.

(S) [ (7') a°l a (4.11
+ V 0 + V +

q a(s) = [1 - (7+'-) (a .a a lS))] 1 Cv) a:
-n - sv -n -n -n-l S*V -n

~(s) V ~f ~ (4.2)
:!N]

o(s) r +- .-- ) fa; + a & s)]- ()a
n s-n ni l$)+ ] (;4v ni

+ [ a - ] a + (4.3)
o

s = -"o - a

S - 01 - (4.4)!.N1  !N

s - [I- +0  -, -

+ I a°1 " 0 (4.5)
V .O SO

* 1 o - ~ -1
U + +{a.In + In I-n-1 1 I I I

1 -1 - (4.6)
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v 0 +

8(S)() [a + a a- () +a a (S)] (4.7)

I0 + + 4
8 (0) !, + *a s ++a s
_n ni mi -nl~ -f-n

nn(1+) -n

T b8 o T (49)

T - T +
%n 'b n-1~~ (e. a efl- a 1) ,mo 0 arbitrary (4.10)

e T e T ;K = y *T 1 1 (4.11)
n nIeN %bn
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S. Row Balance and Row Generation

The computational procedure outlined in sections three and four,

although a Tank-reducing procedure, can be improved by using set balance

on the state space, when mean passage times are not needed. A still

greater improvement can be realized when the a+ (or a-) are invertible-n -ri

for all n. We have seen (§1) that the required invertibility is often

present.

To exhibit row balance (cf. 5.9) some preliminary tools are needed.

Lemma 5.1

T -T[ o T +
En1 --n+il .![- a en I -< (5.2)

and

T- T 0
Ta a T a] (5.2a)

Proof:

The forward equations are:

d T T T 0 T a+ T M (5.3)
di Wt) -Vwn(t) + w (t) %En-1 a-+ aV.1 +l !

I n < N-1

and

d T T T 0 T (S.(a)
o o(t) a

0(t) + \o(t) a + V.1Ct) l (5.3a)

T T d T 0T tersl simdae
When we let t-, so that Pn(t) *_, (t) .0 the result is inediate.

Theorem 5.4

rf a is invertible for all 1 < n < N then

{ M -
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= {eT [ -a T - 1 < n < N-1 (5.5)

- - -e -n_ l - -+

and

eT = 1 0 1 (S.Sa)

Proof: trivial by Lemma 5.1. o

We see that when the ergodic distribution is desired, and this

Tinvertibility present, the e are available recursively via (5.4). This
-n

Tcorollary implies that one need calculate only one eigenvector (e )in-bo

order to obtain the other eT recursively.
-n

A similar result holds when the A+ for 0 < n < N are invertible. TheFn

recursion then begins with T

Theorem 5.6

If a is invertible for all n>0 then

eT = T [I a0  - iT a I _(a )-.
I ' , n = 1,..., N-i (.)

_n n -+l n+l 1 -

and

-1 [1 0 + (5.7a)

Proof:

(5.7) is just (5.2) rearranged. The forward equation (5.3a) has its

counterpart on the top row

d T - T To,+ T_ t 58dT EN(t) - -N(t) + V .IN VN 1 (.N - I

When t- 0- (S.8) becomes (S.7a)
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Even when neither set is invertible, set balance can be used to

T
normalize the as described at the end of section 3. We are now ready

to prove our basic result.

Theorem 5.9 (Row balance)

T T e +

a z l 1 - a (5.10)

for 0 < n< N-l

Proof:

Recall that a 1 - 1- and . L - - 1, 1. Cbining

this with Lemma 5.1 we get

Ta+ T T T

ea a 1 e a 1-cal-n - - -n+1 _ -in-1 -I -1 (5.11)

and

T +T -ea 1 a e il1 (5.11a)

The proposition now follows inductively.

t4
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§ 6. The Matrix Polynomial Representation of a (s)
-IOn

Important information on the dynamical behavior of a Markov chain

is contained in the spectral structure of its first passage time densities.

Knowledge of this structure, and that of the related relaxation time, is

essential when one wishes to use the ergodic distribution [6].

Towards this end we introduce a representation of a (s) of the
-lm

Rm s)l(s), where QT(s) is a matrix polynomial.

The set of poles of a (s) correspond to spectral lines.

Our approach closely parallels the work done on one-dimensional

birth-death processes in [2,3] and [6]. This representation will be

used to discuss the structure of s CT) and simple related results. We
-on

also indicate how this representation may. be used, in principle, to obtain

the relaxation times.

Thoerem 6.1

If a is non-singular for all n, define

in [ls ( a_:,--I
(S) + [ - a)2,(s) - a- . ls)] (6.2)

with

jqoCs) = ( ; 1 CS) = C -l [CSV) I - a]. C6.2a)
V -

Then

the matrix polynomial QCs) is invertible VY s > 0 (6.3)

G+ * qs -1 (6.4)ionCS n Cs ) 1s)
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Proof: (By induction)

* Clearly (6.3) is true for n-0. If we rewrite 2o1(s ) as Q1 (s)=

4+ +-1 V 0 0
(!*)(a - a"] ; a is strictly substochastic henceV u.Q 0 V --o°"

* Q Cs) is invertible for all s > 0. Thus (6.4) makes sense and is clear-

ly true for n-O. Now assume Q (s) is non-singular for 0 < <M and

(l ) for 0 < n < M-1. Then

+ (c)- [- c c+' I. cs -0.- (6.5)

s+v [,-

By the same argument as that for (2.8) et al., we get that i~s)

-11
is invertible V s> 0. Postmultipl),ing (6.2) by Q"1( s ) and inverting

one has ) Q ( s) CS), from (2.8).

We note immediately that the recursion relation (6.2) implies that

( (s))i is a poly-nomial in s of degree n. The decomposition (6.4) will

be seen to be useful in a variety of ways.

The 2,(s) arrays allow one to evaluate first passage times upwards

and downwards over a number of rows rather easily. The following theorems

illustrates this:

Theorem 6.6

In the context of Theorem 6.1,

a) An(s) -;ls) for n> 1

b) Q.1. 1C0) (a'& 2, g(0) * (', - n) o(0) - a 2. o)

with Q')(0) - 0 and T(O) - (a)
- 1 V



-26-

c) P" = lco) =()Q;, (O)

Proof:

n-1 n-1
a) a on(S) I Cs q(s) C1 1 (S)&(S))4 Cs)muD mini

-1oM-

4 1 (s) by Theorem 6.1

b) From (6.2) we get

1c) - ( ) * c --)I- =n° cs) (6.7)

in - I lCS)}

At s-O this becomes (b). The cases n-O,l are trivial.

c) From (a) ((s)con(S) , I, hence

V(s)oon(s) + 9n(s)Zn(s) 0. (6.8)

Therefore,

lion 4 " n(0) = (i(0) C0)q1 ( 0) (6.9)

Theorem 6.6 provides a computationally easy way to calculate the

mean upwards passage times when the + are invertible. A dual argument

eases the computation of downwards passage times when the a are invertible.

The explicit formulation for arbitrary upwards passage times follows.
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Theorem 6.10

a) a (s) qm(s) (s) for 0 < m < n < N

b) -0 - 4(0)4l(0) fr 0 < m < n < N

Proof:

a) Since a (s)a (s) = CS) the result follows from (6.6a).

b) We use (a) to obtain nCS) Cs) = (s), differentiating at s=O,

one finds that

c ) nC) a (0) (O) = 4(o). (6.11)

From (a) and the identity km = - (0) statement (b) follows.

We note that an(s) 1 (s} l(S) implies that

s - -1 ) (6.12)wan

Thus, calculation of (O), and 4(0) is sufficient to give s and An

directly (i.e. non-recursively, and efficiently).

The matrices g.(0) and 4(0) can be calculated recursively using

(6.2) at s=O, and (6.6b). Knowledge of the matrices allows us to

evaluate the mean ergodic exit time and mean stationary sojourn time,

two useful measures of the dynamical behavior of the queue [6). Both are

defined with respect to a partition of the state space into two disjoint

connected sets, called the good set and the bad set.

The ergodic exit time is the time required to leave the good set



-28-

given that the system has settled down, i.e. is at ergodicity (and, of

course, that it is in the good set). Thus, the mean ergodic exit time,

when

Gm  = {(j,n) n < m) , B {(j,n) n > m} (6.13)
!M

is given by

Em= Ergodic exit time from Gm (6.14)

- = - eTu1 Y
e-T -myn eT ln<m )./ Y< -

since entry into Bm is at row m. Using Theorem 6.10, we get

T -1-11
e {Q (O)Q (O)Q'(O)Q-l(0) - Q'(O)Q-I(0)) I

n<m n - -n - -M MM (6.15)
Em T

n<m -1

The stationary sojourn time is the time required to first leave the

good set given that the system was stationary and a transition into the

good set from the bad set just occurred. We have

V = Stationary sojourn time on GVm "m

= ea ~ e/~ (6.16)

This can be rewritten in a simpler form using a well known result [6] as

1V P (G )/BG (6.17)
P( am in
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where P (Gm) is the total ergodic probability on the set Gm  and imG m

is the ergodic probability flow from 8m to G m. This is

UM I]V e -eT  V e T a-I1 (6.18)
Sn<mm

N
For the ergodic exit time to Bm when P(B) en- e  << 1 as is

m
often present for systems with adequate capacity or high reliability

only the mean exit time is required. This may be obtained from a line
search.of Det ((s)) along the negative real s-axis. Discussion of this

is postponed to a subsequent paper.
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§7. A Tandem Queue Example

A tandem queue is a queueing system with distinct service facilities

connected in series, i.e. the customer output Stream of the first facility

is the input stream of the second [:9). To illustrate the algorithmic

procedure we have developed, one such tandem queue will be analyzed.

The example selected has been chosen primarily for didactic reasons.

z A more complex and realistic example could have been analyzed with little

increase in machine cost.

The tandem queue evaluated is a two server series queue with block-

ing and finite buffers (see §1.E). The first service facility has 8

buffer slots and 4 servers. The second facility has 4 buffer slots and

S servers. A flow diagram is given in Figure 7.1. The corresponding

rate matrices are given in Figure 7.2. When the first queue is full

customers balk and go elsewhere. When the second queue is full, the

first queue stops serving until a space at the second facility opens up.

The model can easily be modified to allow different types of blocking,

and features such as feedforward, feedback, etc.

* In Figure 7.1 the occupancy level at the first facility is given by

the coordinate j which corresponds to the number of people in service or

waiting there. The occupancy level at the second facility is given by

the coordinate n. The blocking may be seen in the absence of the

transition rates associated with UIon the top -row.

0 +Figure 7.2 displays the three ratricesgn, 4 , and xnwhen n=3.

The matrix 0 is upper diagonal (A~) for all n. The only transitions

which have no impact on the 2nd queue are the arrivals (at rate Xk) to

the first queue, which increase that occupation level by 1. The matrix
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" is diagonal, with diagonal elements Ui2=min{n,k 2 ) where k2 is the

number of servers in the 2nd service facility. Finally, v is lower
-n

diagonal. Increases in queue length at the 2nd service facility are

caused by departures from the first facility.

The results are shown in Figs. 7.3 (a),(b),(c), 7.4 and 7.5 for a

traffic intensity of 0.4 at the first facility and 0.6 at the second.

Figs. 7.3 (a),(b),(c) describe the ergodic probabilities as a function

of.(j,n). An examination of these figures immediately reveals two features.

First, the ergodic probabilities are signficant for modest values of j

and n, arising from the moderate traffic intensities. The small ridge

visible along the upper edge of Fig. 7.3 (a) indicates some blocking.

The ergodic probabilities may be useless when system parameters

change before ergodicity is reached. The information contained in the

first passage times may then be helpful. The ergodic distribution, for

example, might cause concern over large probabilities of saturation,

blocking, long waiting times and so on. If, however, we look (cf. Fig.

7.5) at the mean first passage times from idleness, we see that the

mean time to saturation is on the order of 4 days (when our time scale

is in hours). If this queue modeled a system that starts anew each day,

one would be less inclined to worry.

The tables in Figure 7.4 give, for differing levels, the

mean sojourn time [6], i.e., the mean time spent above a certain level

after the level is reached. This gives a feeling, for example, for

the persistence time in a congested state. The table 7.5 presents
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mean first passage times one step upwards (downwards). The (j,n) entry

in the table is the mean time to go from (j,n) to a state in the row

i• n+l (n-i). Again, the effect of blocking is noticeable in the dropoff

(for the upward table) of the passage time with increasing values of j.

Ergodic distributions for the same system with different parameters

are shown in Figure 7.6 for comparison purposes.

V
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Fig. 7.1 Transition rate structure for the tandem queue

Transition rates are shown for representative edge, corner, and
interior states.
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§8. Rank Reduction in the Row-Continuous Model

The algorithms presented in the preceding sections exploit the

block tridiagonal structure of the transition rate matrix associated

with a bivariate row-continuous markov chain. These algorithms are

considerably more efficient than the general algorithms for computation

on a markov chain both in computer time needed to attain desired results

and in storage needed to perform these computations. To illustrate this

fact we compare the resources required to calculate ergodic probabilities

for the tandem queue of section 7.

We note that the tandem queue is not time reversible, and so we

could not have used detailed balance simplification. We also note that

the mean passage times, themselves of some importance, are a byproduct of

the row-continuous ergodic distribution calculations. Finally, the

tandem queue does have the property that a- is trivially invertible,

a feature which reduces computation time.

In order to calculate ergodic probabilities efficiently we must
+ 0 + ,-store the.a-. *, an. of course, as well as the and . The storage

requirements are then O(J 2N). For a contiguous problem (such as this)

one would pick the row direction J(t) to be that with the fewest states.

A naive generalized approach would store the full transition matrix,

thus using up (j2 N 2) memory locations. For example, one tandem queue

problem with J=8 and N=80 was evaluated in a workspace of 140,000 bytes.

The transition rate matrix for the bivariate problem would require more

than 4,000,000 bytes alone.

The example of section 7 was coded in APL, a notoriously inefficient

language. Table 8.1 gives some times for the tandem queue evaluation.
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These were run on an Amdahl 470 v/6 timesharing with 20 users. The

timings include all setup and all calculations required to find the

ergodic probabilities. For comparision purposes, a single eigenvalue

was found for a 64 x 64 transition matrix. This requi-ed approximately

70 CPU seconds using an optimized successive approximation. No effort

was made to optimize the programs used for Table 8.1. In fact, the

matrices were regenerated when needed.

A complexity argument can be used to find the number of operations

required to evaluate the ergodic distribution. This would severely

understate the advantage of using the previous algorithms, because a

general approach would require repeated paging in and out of the system

parameters for a problem of any size. Nevertheless, the run-time was

determined empirically as 0(J2 N). Ne expect that when it is necessary to

calculate"()I, rather than being able to explicitly determine then

(as in the tandem queue where n is diagonal) the calculation time would

be 0(J 3N), still a greet improvement over the general case.
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J N CPU time (seconds on an IBM 370-158)

2 2 1.2

4 4 1.7

4 16 5.3

6 60 22

6 80 28

8 8 4.6

8 16 8.5

8 40 20.2

8 80 40

12 16 16.4

12 24 24

16 8 17:5

16 16 31

Fig. 8.1 Approximate CPU time required to calculate
ergodic probabilities
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